发布时间:2024-05-10 访问量:87
在一场4×100的接力赛中,教练会分析每位队员特点,让其完成不同赛段,充分发挥各自的优势,协同打赢比赛。
在万物互联的“赛道”上,云计算、雾计算等计算“选手”也各有所长。然而,有时单个“选手”无法满足需求各异的应用场景,怎么办?
“混合计算”就扮演着协调每位“队员”的“教练”角色。在日前举办的2019年中国(北京)国际服务贸易交易会上,关于《“混合计算”赋能金融科技》的演讲引起热议。
那么,“混合计算”究竟是什么?有何应用?记者就此采访了相关领域的专家。
万物互联时代需要更强算力
据测算,到2020年,全球联网设备的数量将达到500亿台;到2025年,万物互联的销售收入将达到1.6万亿美元;到2030年,物联网产生的数据量将达到4.4ZB(泽字节)。
“当前数据从消费端到生产端、从设备到数据本身,万物互联市场已呈现出爆发式增长态势。而大数据和物联网技术对数据处理能力的要求很高,这就需要充分挖掘算力。”复旦大学大数据试验场研究院、上海市数据科学重点实验室副研究员张帆在接受记者采访时说。
“‘混合计算’就是试图利用5G的万物互联能力,综合利用云计算、雾计算、边缘计算等计算方式,实现高效协同计算。”福建工程学院科研处处长、福建省北斗导航与智慧交通协同创新中心主任邹复民教授介绍道,“混合计算”这一概念最早由蒋志祥在WMIC 2018世界移动互联网大会上提出。这一概念的形成,历经了多年的发展。
谈及其技术原理,张帆说,“混合计算”借鉴了异构计算的思想——用不同的计算资源处理适合该结构的任务。异构计算的概念提出的时间很早,但受实现条件限制,直到近年才得到了巨大的发展。
随着万物互联市场的发展,产业界逐渐认识到单一的计算方式不能解决所有问题,为此针对不同计算方法各大厂商展开了积极探索:英特尔公司在2015年收购阿尔特拉公司,同时着手开发芯片内可重构技术;赛灵思公司在2015年实现了编程环境的统一;百度在2016年开始推进“百度大脑项目”,试图在一个计算体系内实现多种算力的混合……
2018年1月4日,工业互联网产业联盟正式发布了《工业互联网平台白皮书(2017)》,其中关于工业互联网平台功能架构图的内容,已经初步陈述了边缘计算和云计算进行协同计算的理念。不仅如此,华为、西门子等公司也针对“边云协同”不断地进行探索。
将各类计算方法进行排列组合
在不同的应用场景,云计算、雾计算、边缘计算等计算方法展现出的优势也不同。
邹复民以智慧交通应用场景为例介绍道,车辆在自动驾驶时,若要启动防碰撞紧急制动装置,需要计算平台在毫秒内做出判断,这就要应用到边缘计算技术;而交通拥堵分析及智能诱导功能,则应用了云计算技术,通过云计算中心对交通大数据进行综合分析与挖掘,得到最终的诱导方案。
张帆认为,与早前单个计算方法不同,“混合计算”将各类计算方法进行排列组合,构建出某领域专用的高效应用组件,从而更好地满足无线互联、视频处理、图像识别、智能制造等多领域的高效处理需求。
张帆举例道,在网络视频业务场景中,工作人员就可以协同运用边缘计算和云计算这两种计算方式。比如,在进行直播推流(把直播内容传输到服务器)时,首先利用云计算技术将数据进行存储、收集,然后可利用边缘计算在就近节点进行转码和分发,减少了对云计算中心的压力,节省了中心带宽成本,同时实现网络低时延,进而提高了直播质量和用户观看体验。
再如,在无人驾驶领域,可综合利用边缘计算、云计算和人工智能(AI)技术:用边缘计算传感器收集数据,将数据发至云端,传感器融合、虚拟世界模型更新都在云端实现;AI在“云”中确定行动计划,并通过云端向汽车发布控制命令。
邹复民说,“混合计算”的技术平台可以部署在从消费级各类应用、到智慧城市级各类应用、到农业溯源区块链的各类应用、再到未来最具增长的工业互联网各类应用。
在技术和应用层面存在诸多挑战
“‘混合计算’目前还主要停留在概念阶段,未见成熟的技术方案和框架。”邹复民说,要真正实现各种计算协同的“混合计算”,在技术和应用层面,还面临着诸多挑战。
随着连接设备数量的剧增,网络管理、灵活扩展和可靠性保障等方面都面临着巨大挑战。张帆举例说,以工业互联网为例,其存在大量的异构总线和多种制式的网络,它们在兼容多种连接的同时还需要确保连接的实时性和可靠性。在此基础上,要实现数据协同,则需要跨厂商、跨平台的集成与操作。
面对海量复杂的应用环境,如何将任务准确、完整地下达到各计算节点;通过计算节点计算后,如何将有效信息整合到任务中进行反馈……这些都是考验“混合计算”协同能力的重要指标。
“不仅如此,在万物互联的场景下,涉及访问控制与威胁防护等安全问题的挑战大幅增多,安全和隐私如何得到保证、如何抵御攻击,这些都是安全领域需要关注的重点内容。”张帆说。
针对应用层面存在的障碍,张帆认为,“混合计算”中各种计算协同进行工作后,其应用场景将会越来越多、越来越复杂。如在车联网应用中,多种传感器和采集器之间的协同、汽车之间的协同、汽车端与云端之间的协同等场景将会越来越复杂。
同时,张帆也指出,“混合计算”在万物互联时代要能保证在不同应用场景实现落地,仅依赖5G的高速率、低延时是远远不够的。在不久的将来,随着网络通信能力的提高、“混合计算”各种协同问题的解决以及产业链的完善,“混合计算”的能力才能被充分发挥出来,赋能各类应用场景。(记者 谢开飞)
关键词:云计算,雾计算,边缘计算,计算混着用
联系我们